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GS2 domain

Assume slow evolution of
equilibrium profile
compared to fluctuations
Assume small correlation
lengths

3 spatial dimensions, 2
velocity dimensions
Domain restricted to flux
tubes



Multiscale modeling

* Turbulence simulation -> fast scale, computationally expensive
* Radial heat diffusion -> slow scale

* Confinement time ~0.25s
* Turbulence modes ~0.00001 s



Heat flux




Guiding Physics Equation
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* Electrostatic gyrokinetic equation

* Describes time evolution of gyrokinetic distribution

* Heat flux derived from radial velocity perturbation

* Can we find the heat flux without fully solving the GK equation?




Current standard for turbulence modeling

* G52: W. Dorland et al. Phys. Rev. Lett. 85, 5579 (2000).
* Industry standard
* Parallelized 5-D gyrokinetic code

* GX:
* Unpublished but optimized and benchmarked
* Orders of magnitude faster than GS2

* Trinity 1-D transport solver: M. Barnes Ph.D. Thesis (2008)
* Extracts diffusion parameters from turbulence codes
* Calculates heat flux



1-D Kuramoto-Sivashinsky (KS) Equation

* u(x,t) is periodicon [0, L)

* Arises in plasma physics: trapped ion mode instabilities

* Quadratic nonlinear term

* Higher-order dissipation

* Nontrivial chaotic dynamics

* A long-wavelength limit of the equations in turbulence code



Traditional Artificial Neural Networks
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Network

* Basic structure: feed-forward series of layers of neuron-like units.

* Artificial neurons receive weighted inputs and process into outputs.

* Weights between layers are optimized on a training set.

* Primarily used for pattern recognition or classification tasks



Recurrent neural networks

* Network weights updated with backpropagation through time
* Advantage: feedbacks permit system memory
 Disadvantage: higher training cost

* Useful for studying time series data



Reservoir Computer

* Recurrent ANN with distinctions such as:
* Connections defined by random and sparse adjacency matrix.
* Input and internal weights remain fixed.

* Advantages:
 Simpler training process
* Output parameters can quickly be reused at a later time.

* Disadvantages:
* Like other ANN methods, black box
* Reservoir size scales with problem size unfavorably



Project goals

* Implement reservoir using tensor library
* Train reservoir to predict future states of turbulent plasma

* Use reservoir to predict turbulent heat flux within a specified
tolerance

 Determine if reservoir’s time to solution is faster than GX alone



Reservoir Details

* Input of dimension M

* Network of D, neuron units with sparse adjacency matrix A
* W Input coupling matrix of dimension Dy x M

* W_ . Output coupling matrix of dimension M x D

* State vector r(t + At) = tanh[Ar(t) + W, u(t)]



Reservoir-only approach

e u(t) : full GX solution
* R, : linear map to reservoir ANN
e Reservoir: recurrent neural network

Output Layer

T

Ro * Rout : linear map from reservoir to
output

J. Pathak et al. Chaos 28, 041101 (2018);
https://doi.org/10.1063/1.5028373



Reservoir-only approach

 u(t) = full GX solution
* R; = linear map to reservoir ANN

ey

* R, = linear map from reservoir to
| Output Layer O Utp Ut

* Evolve reservoir state:

r(t + Atr) = tanh [Ar(z) + Wy u(7)]

J. Pathak et al. Chaos 28, 041101 (2018);
https://doi.org/10.1063/1.5028373 * Optimize output layer using

Tikhonov-regularized linear
regression



Hybrid reservoir approach

* Allow u(t) to be the standard
timestep for integration

* Knowledge-Based Model = GX
running with less resolution

e R BN  © [N SOMe cases, enables smaller
s reservoir -> faster training and
solution

J. Pathak et al. Chaos 28, 041101 (2018);
https://doi.org/10.1063/1.5028373



Verification

* 1-D Kuramoto-Sivashinsky Equation
* Compare to published solutions from existing Matlab code

* 5-D gyrokinetic turbulence solution
» Compare plasma states and turbulent heat fluxes to GX

* Will separately test input and output interfaces



Implementation

o C++

* CUDA

* cuTENSOR

* NVIDIA A1o00 Tensor Core GPU



AMSC 663 timeline

* October-early November:
* Develop C++ solver for 1-D Kuramoto-Sivashinsky (KS) equation
* Build solver using GX and verify

* Mid November — December:
* Implement reservoir using cuUTENSOR
* Train reservoir to predict 1-D KS states
* Reproduce results of J. Pathak et al. Phys. Rev. Lett. 120, 024102 (2018).

* Reproduce 1-D KS result from J. Jiang andY. Lai. Phys. Rev. Research 1,
033056 (2019).
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AMSC 664 timeline

* February-early March:
* Build reservoir for the 5-D gyrokinetic turbulence code GX
* Calculate macroscopic average turbulent heat fluxes
* Compare time to solution with direct numerical solution

* March-May:
* If reservoir is faster, call reservoir from 1-D transport code Trinity
e Benchmark solutions against existing codes
* If reservoir is outside of tolerance, implement hybrid reservoir and test



Deliverables

* Proposal, progress reports, presentations

* Trained reservoirs

* C++/CUDA codes: documented and in Github

* Figures comparing time to solution for both methods
* Uncertainty estimates for reservoir solutions

* Sample input files
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Additional slides



Training

* Tikhonov-Reqgularized Linear Regression
* Minimize:
T /At
D llu(=mAe) = g (~mAD|? + Bl Wyl
m=1

* Regularization parameter to mitigate potential overfitting



Impact of spectral radius of reservoir
network for 1-D KS equation

* Reservoir is scaled by a parameter
to set the spectral radius.

* Spectral radius impacts ensemble-
averaged RMSE

* Potential challenge for the 5-D
gyrokinetic case

Jiang and Lai. Phys. Rev. Research 1, 033056 (2019).
DOI:10.1103/PhysRevResearch.1.033056



Advantages of magnetic fusion energy

* Baseload power supply replacement

* No CO, emission in power plant operation
* Safe waste product: helium

» Abundant fuel: water and lithium

* No risk of “meltdown”



Turbulence

e Simulate small-scale turbulence in the flux tube
* Mitigate turbulence -> increase confinement time T



